تحلیل کیفیت سامانه فتوولتایک منطقی در سطوح ملخی

مصطفی اسماعیلی شاکیان
دانشجوی کارشناسی ارشد مهندسی مکانیک بیوسیستم- اثری های تجدید پذیر
استقلال تربیت مدرس
mostafa.esmaeili@modares.ac.ir

فلاگحسن نجفی
دانشگاه گروه مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس
لیسبند سملی
(بیوسیستم)
g.najafi@modares.ac.ir

احمد بن کار
دانشگاه گروه مهندسی مکانیک بیوسیستم، دانشگاه تربیت مدرس
ah_banakar@modares.ac.ir

در این تحقیق، سامانه فتوولتاپک بر پایه پلار گاز خورشیدی متعادل در مساحت ۲۳۰۰ متر مربع، ساخت و مورد آزمایش قرار گرفت. سامانه‌های متعادل فتوولتاپک امکان استفاده در سطوح منطقی را محدود می‌کند. با توجه به اهمیت منفی‌ها و مزیت‌های محیطی، سامانه استیکس دما برای دویف به خاطر داشته و ارتباط با ترکزهای لیسبورد طراحی و ساخت و داده‌های این‌گونه هواشناختی به‌دست آمده. تحقیق اقتصادی سامانه‌ها با استفاده از روش‌های کالکشنی و انتخاب، همچنین طرح آزمایش تاکوگی با مشخصات هدف مشخص شکست گرفت. بدنه پلار از پلی‌یور ایجاد شده سامانه برای استفاده شد. تاکوگی شکست نشان داد که تخمینی از سیستم‌های فتوولتاپک در سطح لیمکر می‌تواند سامانه را به هدف ترکزهای نیازمند و سامانه منطقی بر روی سطح استوانه و تحت تاثیر ترکزهای نیازمند را دانست. مدل‌های طرح آزمایش گم تاکوگی شکست داد که نشان داد که سامانه‌های در سطوح منطقی بر اساس دهه ۹۰ تصویری و تغییرات

مورد آزمایش قرار گرفت، نتایج سامانه در حالت استقرار بر روی سطح مدل W ۵۵۰/۵ و سطح پلار مدل W ۵۰۰/۵ بیان و ذکر نمود. تحقیق اقتصادی سامانه‌ها نشان داد بر اساس حالت استقرار بر روی سطح تغییرات و ترکزهای نیازمند بر اساس حالت استقرار بر روی سطح تغییرات و ترکزهای نیازمند بر اساس حالت استقرار بر روی سطح تغییرات و ترکزهای نیازمند بر اساس حالت استقرار بر روی سطح تغییرات و ترکزهای نیازمند بر اساس حالت استقرار بر روی سطح تغییرات و ترکزهای N

واژه‌ها کلیدی: فتوولتاپک، پلار گاز خورشیدی متعادل، لیسبورد، تاکوگی

تاریخ دریافت: ۱۳۹۶/۱۲/۲۹
تاریخ پذیرش: ۱۳۹۶/۱۲/۲۹
1. مقدمه

امروزه با پیشرفت فناوری، انرژی تابشی خورشید مستقیماً به الکتریسیته تبدیل می‌شود و این گام
از بزرگی در دریافت توان از خورشید است. با وجود این، هنوز تا ۱ درصد از کل توان الکتریکی
مورد نیاز انسان‌ها که معادل ۱۸۴۰۰ تراوات ساعت می‌باشد، از طریق سلول‌های خورشیدی تأمین
می‌شود (EPIA, 2015; IEA, 2015).

همه انرژی و منابع مختلف تهیه آن، در حال حاضر در زمینه ریزکره‌های اصلی دولت‌های
جهان قرار گرفته است. سوخت‌های فسیلی بخش عمده تأمین انرژی را به خود اختصاص داده‌اند
(Kohjiro, et al., 2005). با توجه به صنایع و تأمین
انرژی از سوخت‌های فسیلی بهره‌برداری برای محیط‌زیست به وجود آورده و میلیون‌های
تن گازهای
گلخانه‌ای را به جو متصاعد می‌کند (Ekrami, et al., 2008). اغلب صنایع جهان زیرساخت‌های تأمین
انرژی خود را با منابع سوخت‌های فسیلی (زغال سنگ، نفت و گاز طبیعی) طراحی کرده‌اند، اما
سوخت‌های فسیلی منابع یابان‌پذیر هستند. بنابراین، بحران باید به دنبال منابع جایگزین برای تأمین انرژی
مورد نیاز خود باشد (Kohjiro, et al., 2005). در حالی که شاخص شدت انرژی در ایران از سال
۱۳۵۳ تا ۱۳۸۳ از ۱۰۰ به ۳۰۰ رسیده است، میانگین شدت انرژی در جبهه ۲۴ و این رقم در ایران
بیش از ۱۰۰ باشد (پی نام، ۱۳۹۵).

انرژی خورشیدی به‌عنوان یکی از مهم‌ترین منابع انرژی‌های تجدیدپذیر به دو صورت گرمایی و
تون الکتریکی پیش‌نهادی می‌گردد. کشورهای اروپایی برنامه‌ریزی کرده‌اند تا سال ۲۰۳۰، ۲۰ نزدیکی به
۵ درصد از نیاز گرمایی کشور به خورشیدی تأمین کنند

۱. شدت انرژی: مصرف انرژی بر حسب تناول معادل نفت خام به ارزیابی ۱۰۰۰ دلاری تولید ناخالص ملی تعیین می‌شود.
مطالعات پژوهشی نشان می‌دهد سالانه تعداد روزهای آفتایی در تهران 313 روز و تعداد ساعات آفتایی در سال حدود 1742 ساعت می‌باشد. الگوی تغییر آن در کشور ایران از سمت جنوب شرقی به سمت شمال غربی در حال کاهش و از غرب به سمت شرق ممولا در حال افزایش می‌باشد (رنووی راد، 1385).

استفاده از اطلاعات تاپش و پکارگیری مدل‌های رياضی تابش نشان می‌دهد در بخش‌هایی از کشور ایران مانند تهران، کرمان، طبس، بیرجند، ایرانشهر، چابهار، شیراز، بهشهر و مناطق کویی شدید تاپش در هواشی صاف از ظرفیت بالا برخوردار است. اما اطلاعاتی که برای این‌گونه اکتشاف از سامانه‌های متداول خورشیدی با پنل‌های شیار قابل انعطاف نمی‌دهد (رنووی راد، 1385) پنل‌های خورشیدی منطقه‌ی قاده به تولید ولتاژ بیش از 50 ولت هستند. این مدارها می‌توانند تجهیزات را که در شرایط طبیعی نیاز به توان را ناشی‌زا پالایش دارند، تأمین ولتاژ کند (Miles, et al., 2010).
طرح بیشتر بهداشت مسکونی، کارگاه‌های سیلوهای انبار غله، مخازن بیوت‌ازسور و گلخانه‌ها در حالی به هنگام طراحی، بی‌بازوی ساخت و تأمین انرژی و شرایط آسایشی در انتقای‌های است. بنابراین، قابلیت استفاده از پل‌های کریستالی معمول وجود ندارد. پل‌های خورشیدی من대로 برای نصب نیاز به سازدهای فازی دارد و معمولاً قابلیت تطابق با اشکال هندسی استوانه‌ای و گروه را به خوبی ندارند. برای حل این مشکلات، یکی از راه‌های طراحی و ساخت سامانه‌های خورشیدی بر پایه پل‌های منطقه است که علاوه بر پذیرش شکل هندسی سازدهای مورد نظر و حفظ قابلیت‌های قابلی، نیاز انرژی تجهیزات الکتریکی در این سازدها را تأمین کند.

2. مروری بر پژوهش‌های بخشی

از زمان شوک نفتی ۱۹۷۳، کشورهای توسعه‌یافته هزینه‌های زیادی صرف تحقیق و توسعه فناوری‌های انرژی خورشیدی نموده‌اند. سهم سرمایه‌گذاری در زمینه انرژی خورشیدی به سمت فناوری‌های نسبتاً پیشرفته جهت گیری داشته است (۲۰۱۳، GMO). در دهه‌های ۸۰ و ۹۰ میلادی تقریباً متفق گردید (۲۰۱۶)، اما با نوسانات شدید قیمت نفت و گاز و همچنین خطر جدی گرمایش زمین به دلیل انتشار گازهای گلخانه‌ای ناشی از سوخت‌های فسیلی، باید دیگر فناوری‌های تجدید پذیر ازجمله انرژی خورشیدی در کانون توجه قرار گرفت. است. در حال حاضر، بیش از ۷۵ درصد انرژی خورشیدی دنیا در کشور رایان تولید می‌شود، اروپا با ۱۵ درصد رتبه دوم و ایالات متحده آمریکا با ۱۸ درصد رتبه سوم را به خود اختصاص داده است (IEA، ۲۰۱۴). بیش از ۸۸ درصد بارز وار عرضه سلول‌های خورشیدی به نوع سیلیکون کریستالی اختصاص دارد (EPJIA، ۲۰۱۵).

در سید انرژی جهان، سهم خورشید در کشور ایران ناجی است، اما سهم این انرژی در کشورهای توسعه‌یافته بیش از ۳۰ درصد است (رییعی، ۱۳۹۱). در پایان سال ۲۰۱۴ ظرفیت فتوتاپیک در جهان
تحلیل کیفیت سامانه فتوولتایک متعتقل در سطوح متین

به ۴۰ هزار مگاوات رسید. کشورهای آمریکا، ایتالیا، زاین و اسپانیا کشورهای پیشرو در ظرفیت نصب شده ارزی خورشیدی در جهان هستند.

برخی از روستایی با استفاده از فتوولتاویک در سال ۱۳۸۵ ابتدا از استان ترکیه آغاز و سپس در استان‌های گیلان، زنجان، بوشهر، تبریز و کردستان اجرا شدند. در همین راستا، پروژه‌ی پرترس در روستایی فتوولتاویک به ۳۴۶ خانوار روستایی نیز در سال ۱۳۸۷ تعریف شد که ظرفیت این نیروگاه‌ها به‌شکل‌هایی استفاده می‌شود. ۳۸۶ کیلووات است. (پیامد، ۱۳۹۵، جوادی و همکاران، ۱۳۸۷). نیروگاه‌های تجدیدپذیر در تأمین برق مصرفی کشور تقوریه هسته‌ای ندارند و در این میان، انرژی خورشیدی یکی از راه‌های شرایط بحران را دارد. در سال ۳ نوع نیروگاه تجدیدپذیر نصب شده، شش صفحه‌ی شیشه‌ای بادی، پیوگلازور و خورشیدی (نیروگاه‌های خورشیدی کمترین ظرفیت را دارند)، صاحب قله‌سی و همکاران، ۱۳۸۷، تقریباً تمام وظیفه برق تجدیدپذیر که با روند کنونی ۱ تا ۳ سال به بهره‌برداری رسیده، از نوع بادی بوده است (شیعی و همکاران، ۱۳۸۷).

در پژوهش هادجادیاپا و همکاران در جهت سامانه‌های خورشیدی فتوولتاویک در گلخانه‌ها، اکوریم کنترل و پایش سامانه‌های خورشیدی بر اساس منطق فازی توانست روزانه ۱۶ متر مکعب را تا ارتفاع ۸ متر با مصرف ۵۰ تا ۵۵۰ وات توان، پمپ کند (پیامد، ۱۳۶۷، زمانی آقای و همکاران، ۱۳۶۷) استفاده از روش تحلیل آزمایش‌های تاکنون در سامانه‌های خورشیدی با آب‌های مختلف (۴) استفاده کرده‌اند. این روش علاوه بر تشخیص مصرف ترموپلیک و تولید برق در پنک گرمای خورشیدی، هندسه بهبود آشپزی، دستگاه‌های را برای رساندن به هدف مشخص بعنی بهبود ضرایب حرارتی تعیین کرد و مشخصه‌های ارگان معرفی شدند (زمانی آقای و همکاران، ۱۳۴۶). موارد بر روی سامانه‌های انرژی هیرید با استفاده از پنل‌های متعتقل نشان داد سامانه‌ها به‌جای می‌توانند علاوه بر تناسب و همراهی طرح آزوتینامیکی، نیاز مزگ و دستگاه‌های بسیار تأمین کنند (پیامد، ۱۳۰۸).

همچنین گرگ و همکاران در پژوهش عملاً در عملاً سامانه‌های بکار می‌سیکون تنفس در این میان یک گرگ.
استفاده از پل‌های منظف خورشیدی را مکرونی‌سازی گزارش کردن (2005) در پژوهش‌ها با استفاده از نرم‌افزار کامپیوتری ارازیابی اقتصادی استفاده از انرژی خورشیدی (فتوولتايک) و بر روی فنی مصارف خانگی در ایران مورد بررسی قرار گرفت. نتایج آن نشان‌دهنده بکارگیری سامانه فتوولتايک در مجتمع‌های مسکونی را با پانل‌های سرمایه‌ای 13 ساله نیاز داد (همدردی عادلی و همکاران، 1393).

شنکر و نامسون در سال 2012 برای اولین بار پس از بکارگیری سولهای آلی خورشیدی، پردازشگر OPV را طراحی و شدید تابش و سرعت با دادن پدیدار کردند (Schlenker and Thompson, 2012). مدودا و کوست پیشرفت‌های داده‌برد پانل‌های دما و رطوبت بر سامانه خورشیدی، باتری‌های تر و مدارس الکتریکی تأثیر گذار است (Medora and Kusko, 2006). کوکووا و همکاران بر روی انواع مدل‌های آنالوگ و ارتباط‌دهی به منظور شبیه‌سازی و طراحی سامانه خورشیدی کارکردن. دقت اندازه‌گیری تحت حالت‌های مختلف در زمان واحد قابل داده کاوی بود و بین خروجی هر دو برنامه نسبت با همبستگی بسیار بالا (R²=999/0) وجود داشت (Koukouvaos, et al., 2014). در پژوهش 20 ساله در سال 2012 گزارش آزمون استاندارد تحلیل سامانه‌های خورشیدی در فضای باز، متغیرهای اصلی ارازیابی عملکرد سامانه فتوولتايك پوست محور در حالکان و حرارتی را معفی کردند (2012). هور و همکاران از روش طرح آزمایش‌های تاکچی در سولهای خورشیدی رنگ‌داده حساسیت برای تعیین نیروی بهبده استفاده کردن. روش آزمایش‌های تاکچی ضمن کاهش تعداد آزمایش‌های دقت مطلوب برای

1. Organic Photovoltaics
2. باوری هایی که دارای الکترولیت مائع هستند.
3. Laboratory Virtual Instrument Engineering Workbench
تحلیل کیفیت سامانه فتوولتایکی منعطف در سطوح منحنی

استخراج متغیرهای مؤثر در آزمایش و نیل به هدف مورد استفاده را به ارمغان داشت (هور و همکاران، 1391).

به رغم ذکر اهمیت استفاده سامانه‌های فتوولتاکی به‌عنوان بندی اشکال و اجسام، در هیچ پژوهش سامانه‌های فتوولتاکی بر روی سطوح استوانه‌ای و کروی مورد ارزیابی قرار گرفته‌اند. با وجود تحقیقات بسیار، متغیرهایی که منجر به تلفات توان در سامانه‌های منعطف خورشیدی می‌شوند، هنوز به‌طور کامل شناخته شده نیستند. استفاده از دیتالیزر و اتصال ورودی‌های آنانالوگ به دیجیتال می‌تواند نقش مهمی در ارزیابی دقیق سامانه‌های خورشیدی داشته باشد.

در این تحقیق، سعی شده است با استفاده از روش‌های ارزیابی اقتصادی و اقتصاد مهندسی، هزینه واقعی استفاده از سامانه‌های خورشیدی منعطف بر روی سطوح تخت، نیم کره و استوانه‌ای محاسبه‌شده و مقرن بصری به‌ویژه استفاده از سامانه‌های خورشیدی انعطاف‌پذیر بررسی گردد. برای این منظره از معیارهای IP, PP, IRR, NPV استفاده شده است.

3. مواد و روش‌ها

3-1. تحلیل فنی

در این تحقیق، از سلول خورشیدی فتوولتاکی به‌عنوان مدل تابش خورشیدی به الکتریسیته a-Si استفاده شد. سلول‌های منعطف با داشتن ضخامت و استحکام مناسب می‌توانند به‌سرعت از آزمون‌های انرژی خورشیدی توان و درسطح صاف، آزمون بر روی سطوح استوانه‌ای و کروی اقدام به دریافت داده‌های ویژگی و توان صورت گرفته. برای این منظور، سطح آزمون به سیستم یک مترمربع و طراحی و ساخت سازه استیونه و کره انجام شد.

اجزای تشکیل دهنده سامانه تبدیل انرژی خورشیدی به پایه یکی از منعطف طراحی شکل (1) شامل سازه هندسی به شکل استوانه، نیم کره و صفحه تخت، مولوی منعطف خورشیدی، باتری،
در این تحقیق، مازول فتوولتاییک معطوف به مشخصات جدول 1 نشان داده شده است. این مورد استفاده قرار گرفته است. این مازول فتوولتاییک آموزش سیلیکون خورشیدی فیلم نازک است که با استفاده از تکنیک‌های مختلف در سطح پلیمر، صید و سپس گرفته شده است.

جدول 1. مشخصات مانگ فتوولتاییک انعطاف‌پذیر 12V JNPsolar 3W

<table>
<thead>
<tr>
<th>مشخصه</th>
<th>واحد</th>
<th>تعداد</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td>3.5</td>
<td>توان در نقطه بیشینه</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>14</td>
<td>ولتاژ مدار بسته</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>0.45</td>
<td>جریان اتصال کوهن</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>12</td>
<td>ولتاژ در نقطه بیشینه</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>8.8</td>
<td>صفرکرده</td>
</tr>
</tbody>
</table>

(منبع: JNP, 2016)
با توجه به ابعاد پنل، سطح آزمون معادل 1 متر مربع انتخاب شد (Makrides, et al., 2012). با توجه به رابطه (1) بهترین سطح برای توزیع مجموعه پنلهای خورشیدی 1 متر، معادل 9444 cm^2 و تعداد پنلهای مورد استفاده 16 عدد خواهد بود.

\[S_T = S_P \times N \] (1)

در این رابطه، S_T معادل سطح مجموعه پنلهای قرار گرفته بر سطح کل پنلهای S_P و N برای تعداد پنل آزمون می‌باشد. تمام سطح پنلهای خورشیدی وظیفه فتوولتایک نمایش و حاشیه کناری به عنوان سطح نگهداری مورد استفاده قرار می‌گیرد. چنانچه این سطح از سطح کل آزمون (S_T) حذف گردد، آنگاه سطح مؤثر فتوولتایک پیرایی است با:

\[S_T = S_T - N(S_P - S_C) \] (2)

در رابطه (2)، S_T معادل سطح فتوولتاپک پنلهای قرار گرفته بر سطح کل پنلهای S_P می‌باشد. نیازمندی، سطح فتوولتاپک S_T مؤثر در روابط طراحی الکتریکی معادل 699.6 cm^2 و سطح مؤثر در روابط طراحی هشداری سازه‌ها (S_T) معادل 9444 cm^2 لحاظ شد. برنامه پایگاه داده به زبان C و در نرم‌افزار Codevision نوشته شد و معرفی تجهیزات تشخیصی این سطح با هدف اجرای پژوهش محاسباتی و بررسی سلسله‌های 10 مدل ربات و نتایج نهایی را نگیریم. هر از مکانیسم و ارتباط میکروپنلهای رایانه‌ای، از پورت TX و RX به وسیله میکروپنلهای AVR به ازای ۱ تا ۵ ولت ورودی، عددی بین ۰ تا ۱۰۳۲ را تولید می‌کند. برای کالیبره‌کردن نسبت ولتاژ به دما در حساس از رابطه (۳) استفاده شد.

\[\text{میلی ولت ولتاژ خروجی را تغییر می‌دهد} \]
1. فصلنامه پژوهش‌های سیاست‌گذاری و برنامه‌ریزی ارزی/سال سوم/شماره ۷/تابستان ۱۳۹۶

\[Temp_x = \text{read_adc}(0) \times 0.5 \]

چنانچه در رابطه (۳) دما و \(x \) رابطه دما، تکرار شده برای سنجش دمای هر پنل خورشیدی

منفوعت می‌باشد.

در اتصال موزول دما از درگاه سریال RS232 و نرم‌افزار LabVIEW استفاده شد. این نرم‌افزار یک برنامه نویسی گرافیکی استفاده می‌کند که با به‌عنوان ساده‌گیری کار شده است. دما به عنوان مهم‌ترین عامل مؤثر در تولید توان سامانه فتوولتايک محسوب می‌شود. به‌صرفه دقت مورد توجه قرار گیرد. میکروکنترلر، هر ۵۰ میلی‌ثانیه اطلاعات ۱۶ حسگر دما را از طریق ارتباط سریال ارسال می‌کند و پس از دریافت توسط LabVIEW آن را نمایش داده و هر ۵ دقیقه داده‌ها را در قابل اکتشاف باز می‌گردد.

خباره می‌کند.

پیشنهاد توان پنل خورشیدی از حاصل ضرب مقدار ولتاژ (در حالت مدار باز) در مقدار جریان (در حالت اتصال کوتاه) در ضریبی به نام متغیر پوششی به دست می‌آید. متغیر پوششی به بیان ریاضی برای قوس پوششی منحنی جریان ولتاژ می‌باشد و هرچه مقدار آن به یک تندیک باشد، به معنی کیفیت بالا در سامانه خورشیدی است. پنل‌های فتوولتايک JNPsolar3W-12V از نوع سیلیکون به شکل (با پوششی (FF) مطابق رابطه (۴) در روز سطوح محاسبه گردید (اسحاقی و همکاران، ۱۳۹۴).

\[FF = \frac{V_{MPP} \times I_{MPP}}{V_{oc} \times I_{sc}} \]

به‌همراه سامانه فتوولتايک یکی از مهم‌ترین متغیرهای ارزیابی در قضاوت یک پنل باشد. عامل عبدالرضا (با به‌همراه) یا عامل روبرو عمومی (\(\eta \)) از طریق رابطه (۵) محاسبه گردید (Matthew Gra, 2014).

1. Fill Factor (FF)
\[\eta = \frac{P_{s_1}}{m} \]

In the context of the Taguchi Orthogonal Array Design, the objective is to minimize the variance within each level of the factors under study. The design is used to identify the most significant factors affecting the quality characteristics of a product. The equation above represents the signal-to-noise ratio, which is a measure of the effectiveness of the design in reducing variation.

In this equation, \(\eta \) is the signal-to-noise ratio, \(P_{s_1} \) is the mean response level, and \(m \) is the number of levels.

The Taguchi method emphasizes the use of orthogonal arrays to efficiently test the effects of multiple factors on a system. This approach helps in identifying the most critical factors with the least number of experiments.

The document also mentions the use of Excel and Minitab software for implementing the Taguchi method. Excel is used for data entry and Minitab for statistical analysis and graphical representation.

The equation shown is used to calculate the signal-to-noise ratio, which is a crucial parameter in the Taguchi method. This ratio helps in determining the effectiveness of the design in reducing variation.
همچنین داده‌های هوشمندی برای ۹ روز آزمون از استفاده هوشمندی مهرآباد (با فاصله کمر از ۵ کیلومتر) دریافت شد.

۲-۳. تحلیل اقتصادی

ارزیابی عملکرد اقتصادی سامانه‌های مختلف خورشیدی با تأکید بر عمل اقتصادی مهندسی صورت
گرفت. اقتصاد مهندسی در قالب تحلیل اقتصادی پرورش با یک‌گیری روش‌های ریاضی و
معیارهای کمی ارزیابی در دسترس بررسی پروده‌های مختلف سرمایه‌گذاری و انتخاب اقتصادی ترین آنها و
یا تصمیم گیری جهت رده‌بندی اجرای پروده‌های خاص می‌پردازد (آسکونژاد، ۱۳۸۳). در این تحقیق،
از نرم‌افزار کامپلو نسخه ۳ استفاده شده است. معیارهای اقتصاد مهندسی محاسبه‌شده استفاده در آزمون
عملکرد اقتصادی به شرح زیر می‌باشند.

معیار ارزش خالص فعلي (NPV)

این معیار با در نظر گرفتن تعیین زمانی پول، تعادل میان پرداخت‌های سرمایه‌گذاری و درآمد‌های
حاصل از اجرای سرمایه‌گذاری ایجاد می‌کند. ارزیابی این تعادل در مقایسه با نرخ بهره استانداردی
است که ممکن است طرح برای سرمایه‌گذاری با یک‌گیری وجوه، از قبل تعیین نموده است. به این بهره،
حداقل بهره قابل جذب یا «هزینه سرمایه» می‌گویند.

ارزش فعلي مجموعه‌ای از جریانات وجوه نقده آنها از طریق رابطه (۵) محاسبه می‌گردد:

\[NPV = NCF_0 + \frac{NCF_1}{(1+i)} + \frac{NCF_2}{(1+i)^2} + \frac{NCF_t}{(1+i)^t} \]

۱. Net Present Value
تحلیل کیفیت سامانه فتوولتاپیک معطوف در سطوح منحنی

1. Internal Rate of Return
2. Cost of Capital
با استفاده از معیار دوره بازگشت سرمایه (PP)، دورهای که در آن مجموع درآمد‌های سالانه با هزینه سرمایه‌گذاری برای سرمایه‌گذاران (PP) روش تقسیمی و میانسال خاص برای مقایسه بهره‌گیری و به نفع پروژه‌های است که در سال‌های اولیه عوامل پیشرفت خورود. به‌طور دیده‌گر، هرچه این شاخص کوچک‌تر باشد، بیانگر سرعت بیشتر جریان تقدمی خروجی به وسیله جریانات متقابل و بدون می‌باشد. نتایج پروژه از جذابیت بیشتر برای سرمایه‌گذاری برخورد است.
دوره بازگشت سرمایه شامل دوره بازگشت سرمایه‌فراهم‌کننده و متحمل‌کننده سرمایه‌ای می‌باشد. مفهوم دوره بازگشت سرمایه‌فراید و متحمل‌کننده از خالص جریانات متقابل جمع‌آوری طرح در مدت به‌دست‌آوردن و نظور از دوره بازگشت سرمایه‌نگران، این است که ارزش زمانی پول در محاسبه PP (مدل‌گر و قرار گرفته و محاسبات بر اساس داده‌های تنظیم شده صورت گرفته است.

به طور کلی، محصول تولیدی این پروژه برای می‌باشد که سامانه‌های منطقه‌ای خورشیدی به اندازه ۳۶۵، محصول اصلی تولیدی، بری تولید کرده، در بانک ذخیره و با شرکت رقابتی سراسری متوقف می‌کند. همچنین طول دوره ساخت پروژه شدید خرید و نصب تجهیزات، یک سال در نظر گرفته شده است. طول دوران به‌رهبرداری با عمر مفید سامانه‌ها معادل ۲۰ سال می‌باشد (وزارت نیرو، 1390). نرخ نرخ در نظر گرفته شده در این بخش بر اساس میزان دوره در پنج سال اخیر بین سال‌های ۱۳۹۰ و ۱۳۹۵ مربوط به دسته کالاهای آب، بری و سوخت به‌طور متوسط ۱۰ درصد بوده که در این مطالعه نیز هنی میزان در نظر گرفته شده است (بانک مرکزی، 1395).

آمار بانک مرکزی ایران نشان می‌دهد نرخ سود سرمایه‌گذاری (سرمایه‌گذاری دیدنی) بیشتری کاهش یافته و به ۱۵ درصد رسیده است؛ اما طی ۱۰ سال گذشته دارای میانگین ۱۸ درصد بوده است که در این تحقیق به عنوان نرخ تنظیم معیار در نظر گرفته شده است (بانک مرکزی، 1395).
در این برسی، ارزش گذاری اعلام هزینه و فاکتورهای پایه قیمت های بازار صورت گرفته و فرض شده است که این قیمت‌ها میان ارزش اجتماعی هزینه‌ها و فاکتورهای پروژه هستند و اعلام فاکتهای نیز شامل قیمت فروش بر قبایل تجدیدپذیر می‌باشد که تا کنون در آماده طرح مذکور است. طبق مصوبه مجلس شورای اسلامی، هر کیلووات بر قبایل تجدیدپذیر معلول 800 ریال از مصرف کننده اخیر‌داده می‌شود که این قیمت برای 20 سال عمر مفید سیستم خورشیدی در نظر گرفته شده است (سابقا، 1395). بنابراین، سامانه‌های منطقه‌ای بر اساس عملکرد در شرایط بیشینه تولید برق می‌توانند در آمدی متفاوت در حالت استقرار برق سطح مختلف مطالب با جداول داشته باشند.

جدول ۲. فهرست هزینه‌های برای خورشیدی در سامانه‌ها بر روی سطح مختلف

| درآمد کل سال سامانه (ریال) | واحد کیلووات ساعت (ریال) | بر روی سطح تحت 6000/1346 | بر روی سطح استاندارد 6000/1344 | بر روی سطح تا 8000/1342 | بر روی سطح بیشترر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6590000</td>
<td>953</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680</td>
</tr>
<tr>
<td>759972</td>
<td>696/696</td>
<td>660</td>
<td>660</td>
<td>660</td>
<td>660</td>
</tr>
<tr>
<td>801320</td>
<td>801320</td>
<td>620</td>
<td>620</td>
<td>620</td>
<td>620</td>
</tr>
</tbody>
</table>

نتایج با توجه به محاسبات

شانسیبی هزینه‌ها و مناطق سامانه‌های منطقه‌ای خورشیدی

گام اول در راه اندازی سامانه تبدیل انرژی خورشیدی بر پایه پنل‌های خورشیدی منطقه، خرید اجزای سامانه است که در واقع هزینه ثابت سرمایه‌گذاری می‌باشد. طبق تحقیقات بعمل آمده، هزینه اقیمت تمام شده پنل‌های فتوولتاییک منطقه در مقایسه کوچک معادل ۸ دلار به ارزش هر وات می‌باشد. با پرداخت ۵۸۰ وات معادل ۱۵۶۸۰۰۰ ریال در سال ۱۳۹۵ می‌باشد. سرعت کاهش رشد قیمت محصولات فتوولتاییک لاگر تا زمانی که مناسبی باشد، لیکن علاوه بر پنل، تجهیزات دیگری نیز در سامانه فتوولتاییک منطقه به کار می‌روند. هزینه کل سامانه فتوولتاییک منطقه شامل خرید پنل‌ها، هزینه نصب (بدون نیاز به سازه)، مالیات، باتری، الکترن و ... اساس استاندارد در پروژه‌های فتوولتاییک حاضر ۵۳۵۵۰ ریال برآورد می‌گردد (Ardani et al., 2016).
6. نتایج و بحث

1-1. نتایج تحلیل فنی

آرایه فتوولتایک منطقه‌منشکل از ۱۶ پنل خورشیدی منطقه‌منشکل Mدل JNP3W-12V به صورت سری به‌روی سطح مختلف آماده و نصب می‌شود. سطح این آرایه به‌روی سری اتصال سری و چند به‌روی شبکه، مساحت محاسبه شده. بنابراین سطح آرایه منطقه‌منشکل Mدل JNP3W-12V با حداکثر توان و توان حداکثر شکل (۱) محاسبه می‌گردد. شکل (۱) تحلیل این آرایه منطقه‌منشکل در حالت استقرار بر روی سطح مختلف نشان می‌دهد.

![شهک (۱) تحلیل این آرایه منطقه‌منشکل در حالت استقرار بر روی سطح مختلف نشان می‌دهد.](امضا)

شکل (۲) نمودار توان آرایه منطقه‌منشکل در حالت استقرار بر روی سطح مختلف نشان می‌دهد.

![شکل (۲) نمودار توان آرایه منطقه‌منشکل در حالت استقرار بر روی سطح مختلف نشان می‌دهد.](امضا)
تحلیل کیفیت سامانه فتوولتایکی منعطف در سطوح متنوع

با درک مقدار واریانس و منع ایجاد واریانس، شرایط بهترین عملکرد در سامانه‌ها به‌طور همزمان بایستی شده که این از میزان‌های استفاده از این روش آزمایش برای سامانه‌ها می‌باشد. جدول (3) می‌تواند تشکیل Dise سامانه منعطف خورشیدی نشان دهد. در این آزمایش، 4 متغیر انتخاب شدند. متغیر دما و متغیرهای دما، سرعت باد، مانگی و قوس کمان سامانه در سه سطح موجود هستند. قوس کمان آراوه منعطف برای سطح (1) معادل آزمون بر روی سامانه در حال حالت تحت بوده و سطح (2) مربوط به آزمون سامانه در حالت استقرار بر روی سطح نیم‌کره و سطح (3) قوس کمان مربوط به آزمون سامانه در حالت استقرار بر روی سطح استوانه‌ای می‌باشد. متغیر دما و دما، سرعت باد، مانگی و سطح قاره‌گرخته است. متغیر دما در سه سطح از دماهای محدود 20 تا 50 درجه سلسیوس در آزمون مشابه دارد. متغیر سرعت باد در سه سطح صفر تا 3 متر بر ثانیه در آزمون مشابه دارد.

در طرح آزمایش آراوه متعادل تاگوچی سامانه منعطف خورشیدی با چهار متغیر، نهایتاً 18 آزمایش انجام شد که جدول (4) آراوه متعادل آزمایش‌های تاگوچی برای طرح ({3(6)(8)(10)}).

را به همراه تاثیر توان و عملکرد سامانه نشان می‌دهد.

جدول 3: متغیرها و سطوح آزمایش در طرح آزمایش‌های تاگوچی

<table>
<thead>
<tr>
<th>سطح</th>
<th>سرعت باد (m/s)</th>
<th>دما (°C)</th>
<th>توان تابش (W/m²)</th>
<th>مرحله</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>100-200</td>
<td>2-4</td>
<td>(1)</td>
</tr>
<tr>
<td>2</td>
<td>45-5</td>
<td>10-30</td>
<td>1-2</td>
<td>(2)</td>
</tr>
<tr>
<td>3</td>
<td>30-45</td>
<td>0-3</td>
<td>0-1</td>
<td>(3)</td>
</tr>
<tr>
<td>4</td>
<td>90-240</td>
<td>50-300</td>
<td>4-6</td>
<td>(4)</td>
</tr>
<tr>
<td>5</td>
<td>200-400</td>
<td>800-600</td>
<td>8-10</td>
<td>(5)</td>
</tr>
<tr>
<td>6</td>
<td>1000-2000</td>
<td>1000-2000</td>
<td>10-20</td>
<td>(6)</td>
</tr>
</tbody>
</table>

تأمل: پایه‌های تحقیق
جدول 3 آزمایش‌های معنی‌دار آزمایش‌های تاکوچی و پاسخ آنها

<table>
<thead>
<tr>
<th>درصد (W)</th>
<th>نرمال (%)</th>
<th>سرعت (m/s)</th>
<th>دما (°C)</th>
<th>نتیجه آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.74</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.32</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.44</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0.49</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.57</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0.68</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0.84</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1.63</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1.36</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1.88</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>0.55</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.58</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>0.98</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>0.95</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>0.75</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>0.64</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.64</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

ملاحظه: یافته‌های تحقیق

چنانچه طرح آزمایش‌های تاکوچی را بر مبنای قابلیت تولید بیشترین توان در مورد تحلیل Minitab قرار بگیرد، خروجی تحلیل آزمایش مطابق شکل (3) خواهد بود که شرح آن آمده است.
نتایج تحلیل میانگین اثرات آزمایش ناکوچی (نیست سیکنال به نویز)

در شکل (۳) تمام متغیرهای تابش؛ دما، انعطاف پذیری (زاویه) و سرعت باد مشخص می‌باشد. در محور طولی نمودار سطوح متغیرها مشخص می‌باشد. محور عمودی میانگین SNr (SNr) نشان می‌دهد. در این آزمون، توان بر اساس بیشتر بهتره مورد ارزیابی قرار گرفته است. محور عمودی در حالت عمومی هرچه بیشتر باشد، نزدیکی به هدف را نشان می‌دهد و فرکنی بین انتخاب بیشتر بهتره و دیکتر، بهتره نخواهد بود.

در نمودار شکل (۴) چنانچه ناپذیر در سطح (۱) باشد، به هدف نزدیک‌تر خواهیم بود، بنابراین توان بیشتری در اختیار قرار می‌گیرد. لازم به توضیح است که بررسی و تحلیل عملکرد (ردیمود) سامانه فتوولتایپیک نیز این موضوع را در مورد سلول‌های خورشیدی متعارف تصمیم می‌گیرد. تابش خصوصی مشترکی بر روی سامانه‌ها تا سطح (۳) خواهد داشت، پس از آن، کمی تأثیر پذیری کاهش یافته، اما هنوز برای سامانه بهره بوده و هدف را اراذلی می‌کند. اما در توان تابش بیش از سطح (۵) ضمناً در سطح (۶) و بالاتر، سامانه در خلاف جهت هدف قرار می‌گیرد. با نگاه کامل به گروه توان

1. Signal to Noise ratio
مثالی از متن فارسی: تابشی و SNr آن، مشاهده می‌شود توان تابشی با فاصله گیری از خط مبنا و شکستگی زیاد می‌تواند بر هدف که از طرفی تولید سیاره‌ای در کنار گروه در سطح (در دما، بیشترین تأثیر را بر هدف سامانه داشت. تغییرات در سرعت باد از سطح (1) تا سطح (2) در هدف سامانه بیشتر بود و توانست شرایط را به‌عنوان برای تولید توان در دماهای بالای محیطی تغییر دهد. انطباق بین برخی از زاویه سامانه فتوتاپیک نشان داد تغییر این متغیر

یعنی استفاده از سامانه در حالت تخت (سطح 1) یا استفاده از سامانه در حالت استقرار در بلوک (سطح 2) و یا استفاده از سامانه در سطح استوانه‌ای (سطح 3) می‌تواند بر روی هدف تولید توان بیشتری تأثیر داشته باشد. گروه زاویه سامانه‌ها و SNr شناس داد سطح (1) یعنی استفاده از سامانه در سطح کاملاً خالی می‌تواند بیشترین تأثیر را بر روی سامانه داشته باشد. بکارگیری سامانه بر روی سطح (2) یعنی استفاده از سامانه روی سطح کروی با اندازه‌های هدف تولید توان را در نزدیکی مانگین کویری داشت، اما نسبت به سطح (1) و (3) بهینه می‌باشد. سطح (3) یعنی بکارگیری سامانه بر روی استوانه نسبت به سطح تخت بهینه بوده، اما تولید توان در سطح (2) بهینه می‌باشد. بنابراین، استفاده از سامانه در حالت تخت بر روی پشت‌پام مانند این بگونه یا اولویت نیست. همچنین، چنانچه در مزرعه‌ای همزمان دوباره سیلیز سیاره به مخزن بی‌گازسوز باشیم، استفاده از سامانه در این شرایط بر استفاده در سطح نمی‌کشد. بنابراین بی‌گازسوز تریجیت خواهد داشت. در نتیجه گرفتن این موضوعی بکارگیری تأثیرگذاری بر روی هدف سامانه یعنی بیشترین شدن توان سامانه در تدوین موضوعی به‌عنوان موضوع سطح تابش، سرعت باد و بکارگیری بر روی سطح مختلف همچنین سطح تخت استوانه‌ای و کروی می‌باشد. جدول (5) پاسخ‌های بازگشتی برای مرزبندی‌های آزمون و تبیین اولویت هر کدام را نشان می‌دهد.
پیش‌گویی تحلیل ناگویی در آزمایش حاضر نشان داد چنانچه سامانه در سطوح انتخابی بر اساس بهینه‌ی فرآیند تولید و منفی‌های مورد آزمون قرار گیرد، می‌توان از آن توان تکیه‌ی معادل با SNr 49/9 را با 33/2749 را انتظار داشت. چنانچه آزمایش سامانه به‌صورت مجزا و بر روی سطح کاملاً تخت محاسبه‌ی شده، توان سامانه معادل W 32/64 با SNr 9/4918 خواهد بود. چنانچه سامانه برای استفاده بر روی سطح استوانه‌ای مورد پیش‌بینی توان قرار گیرد، توان سامانه معادل W 46/74 با SNr 7/3488 می‌گردد. این میزان برای سطح نیم‌کره معادل توان W 67/55 با SNr 32/888 محاسبه شده.

جدول 5: نسبت سیگنال به نویز میانگین در آزمایش‌های ناگویی

| سطح | توان کلی | توان آزمایش | امتیاز‌بندی | سرعت پاه | درصد | متغیر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34/07</td>
<td>33/89</td>
<td>33/69</td>
<td>34/10</td>
<td>34/89</td>
<td>34/89</td>
</tr>
<tr>
<td>2</td>
<td>34/79</td>
<td>33/69</td>
<td>33/49</td>
<td>35/05</td>
<td>35/04</td>
<td>35/04</td>
</tr>
<tr>
<td>3</td>
<td>34/44</td>
<td>33/24</td>
<td>33/13</td>
<td>34/85</td>
<td>34/81</td>
<td>34/81</td>
</tr>
<tr>
<td>4</td>
<td>33/91</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>34/10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>34/22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>اختلاف</td>
<td>10/17</td>
<td>10/54</td>
<td>10/54</td>
<td>0/96</td>
<td>0/96</td>
<td>0/96</td>
</tr>
<tr>
<td>امتیاز</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

ملاحظه: پایه‌های تحقیق
نتایج حاصل از تحلیل اقتصادی در نرم‌افزار کامالار نشان می‌دهد خالص ارزش فعال سامانه منتفی در حالت استقرار بر روی سطح تحت به میزان ۶۷۷۷ میلیون ریال و نرخ بازده داخلی آن ۲۳/۸۲ درصد و دوره بازگشت سرمایه‌ی نیز ۳۴/۹ سال می‌باشد. همچنین خالص ارزش فعال سامانه منتفی در حالت استقرار بر روی سطح استوایی و نیم‌گره به ترتیب معادل ۹۵/۸ میلیون و ۱۰/۳۲۰۰ ریال و نرخ بازده داخلی آن‌ها ۲۷/۴۶ درصد و دوره بازگشت سرمایه‌ی به ترتیب برابر ۲۴/۸۸ سال و ۸/۴۲ ساعت می‌باشد.

(۲-۳) تحلیل خالص ارزش فعال (NPV)

متغیر ارزش فعال یکی از مهم‌ترین روش‌های اقتصاد مهندسی است. برآورد ارزش فعال یک قرارند ملی، تبدیل ارزش آیینه کلی دریافت‌ها و پرداخت‌ها به ارزش حاصل در زمان فعلی یا مبدأ پروژه می‌باشد. جنتانچه ارزش فعال خالص به ارزای حداکثر نرخ جذب کننده برای یک پروژه کوچک‌تر از صفر باشند، آن پروژه غیراقتصادی خواهد بود و مشخص کننده آن است که ارزش فعال هزینه‌ها کمتر از ارزش فعال در آن‌ها می‌باشد و جنتانچه ارزش فعال خالص مثبت گردد. ارزش فعال هزینه‌ها کمتر از ارزش فعال در آن‌ها می‌باشد و پروژه‌های اقتصادی است. جنتانچه ارزش فعال خالص برای صفر می‌باشد. پروژه‌های اقتصادی است، زیرا حداکثر نرخ جذب کننده برای سرمایه‌گذار تأمین شده است. npv (۴) طرح‌های را به ارزای نرخ تنزلی مختلف در سطح برای ارزش سامانه‌های مختلف خورشیدی بر روی سطح تحت نمایشگاه و نیم‌گره نشان می‌دهد. نکات قابل توجه در نمودارها عبارتند از:

۱) با افزایش نرخ تنزلی، نیاز به سه سامانه کاهش می‌یابد.
۲) سامانه در حالت استقرار بر روی سطح تحت در نرخ تنزلی ۲۳ درصد پروریده، ارزش فعال هزینه‌ها و درآمد طرح برابر شده است.
3 اسامی در حالی است که بر روی مساحت استوانه‌ای در نرخ تنزلی 26 درصد یک درصد نرخ تنزلی 27 درصد پروژه، ارزش فعلي هزینه‌ها و در آماده طرح برای شده است.

4 اسامی در حالی است که بر روی سطح نم کره در نرخ تنزلی 27 درصد پروژه، ارزش فعلي هزینه‌ها و در آماده طرح برای شده است.

با افزایش نرخ تنزلی از 23 درصد به بالا و در نرخ تنزلی، 26 درصد به بالا در سطح استوانه‌ای و 27 درصد به بالا در سطح نم کره، ارزش فعلي هزینه‌ها بیشتر از ارزش فعلي در آماده می‌باشد و به عبارت دیگر، پروژه غیراقتصادی می‌شود.

تحلیل نرخ بازده داخلی (IRR)

در هنگام استفاده از یک روش، ضابطه قبول یا رد یک پروژه، معیار (فرضی) است که در آمده‌ا (در آماده‌های سالانه) و هزینه‌ها (سرماهم اولیه و هزینه‌های سالانه) را به تعادل می‌رساند. این نرخ که به ازای آن درآمدها و هزینه‌های پروژه به تعادل می‌رسد، نرخ بازده داخلی نامیده می‌شود.

شاخص‌های تنزلی پروژه در حالت اصلی با حداکثر نرخ جذب کننده 16/7 درصد به شرح جدول

۶ می‌باشد.

<table>
<thead>
<tr>
<th>جدول ۶: شاخص‌های تنزلی در سالانه‌ها</th>
<th>مبلغی (میلیون دلار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نرخ بازده داخلی مالی</td>
<td>مالی</td>
</tr>
<tr>
<td>ارزش فعلي</td>
<td>با توحید</td>
</tr>
<tr>
<td>نرخ بازده داخلی مالی</td>
<td>با توحید</td>
</tr>
<tr>
<td>ارزش فعلي</td>
<td>با توحید</td>
</tr>
<tr>
<td>نرخ بازده داخلی مالی</td>
<td>با توحید</td>
</tr>
</tbody>
</table>

ملاحظه: فاقد فعالیت
شکل ۲ نتایج خالص ارزش فنی کل سرمایه در سه ساله (الف: استقرار بر روی مساحت نخست بی: استقرار بر روی مساحت نخست ج: استقرار بر روی مساحت نخست که)

تحلیل نمودار دوره بازگشت سرمایه عادی (PP)

شکل (۵) خالص جریان‌های تقیی تجمیعي - دوره بازگشت سرمایه عادی را برای سال‌ها در سه حالت استقرار نماییم می‌دهد. دوران ساخت و راهاندازی سامانه‌های مختلف خریداری کننده خالص جریان‌های منفی بوده و در نهایت استقرار بر روی مساحت نخست، استوانه‌ای و نیم کره به ترتیب از سال ۹۹/۲۳ میلیون تا ۸۷ میلیون، دوران به سرمایه‌داری خالص جریان‌های تجمیعی طرح‌ها مثبت و به طور پیوسته در حال افزایش می‌باشد. همچنین عادی سرمایه در سال ۹۹/۲۳ میلیون به‌طور پیوسته در حال استقرار بر روی مساحت نخست ۹ سال و در حالت استقرار بر روی مساحت نخست، استوانه‌ای و نیم کره، ۸ سال می‌باشد (PP عادی سرمایه در سال ۱۲۰ میلیون که معادل ۷۰۷/۵ میلیون بوده، نتایج نشان می‌دهد صاحب‌دار متوان استوانه‌ای و نیم کره در سال آن را ۷۰ در نظر گرفت که به ترتیب برای سال‌های نخست، در سال ۱۱۴ و برای سال‌های بعدی استوانه‌ای و نیم کره در سال ۱۱۴ سرمایه عادی اول به دریافت شده مجدداً تحصیل خواهد شد.
نتیجه‌گیری

با توجه به اینکه بررسی توجهی پذیری طرح‌ها معمولاً در حالت عدم اطمینان انجام می‌شود، تحلیل حساسیت معیار مهم در بررسی ریسک سرمایه‌گذاری به‌حساب می‌آید. در واقع، در تحلیل حساسیت، با تکرار محاسبات مالی از طریق تغییر متغیرهای اثرگذار بر نتایج ارزیابی، نتایج بدست آمده با تناوب اولیه مورد مقایسه قرار می‌گیرد. اگر تغییرات ایجاد شده در متغیر‌ها طرح را از توجه پذیری خارج نکند، سرمایه‌گذاری با اطمینان بیشتری انجام خواهد شد.

به منظور لحاظ کردن عوامل در نظر گرفته شده و با ریسک عواملی که بازده پروره‌ها را با خطر مواجه می‌کند، میزان حساسیت شاخص‌های پروره نسبت به این عوامل به‌طور تقریبی برابر می‌شود. بدین منظور، حساسیت شاخص‌های پروره نسبت به تغییرات در آن‌ها و هزینه‌ها در جدول (7) ارائه شده است.
جدول ۷. محاسبات حسابی NPV و IRR نسبت به تغییرات در آن‌ها و هزینه‌های پروژه

<table>
<thead>
<tr>
<th>تغییرات سرمایه‌گذاری (درصد)</th>
<th>ثبات (درصد)</th>
<th>تغییرات درآمد (درصد)</th>
<th>ثبات (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطح هم‌کاری درآمد</td>
<td>۲۰</td>
<td>سطح استقراض</td>
<td>۲۰</td>
</tr>
<tr>
<td>-۲۰</td>
<td></td>
<td>-۲۰</td>
<td></td>
</tr>
<tr>
<td>-۱۰</td>
<td></td>
<td>-۱۰</td>
<td></td>
</tr>
<tr>
<td>۰</td>
<td></td>
<td>۰</td>
<td></td>
</tr>
<tr>
<td>۱۰</td>
<td></td>
<td>۱۰</td>
<td></td>
</tr>
<tr>
<td>۲۰</td>
<td></td>
<td>۲۰</td>
<td></td>
</tr>
</tbody>
</table>

به این ترتیب، در سامانه در حال استقرار بر روی سطح ثابت ۲۰ درصد افزایش داده و ۲۰ درصد کاهش در میزان آن‌ها، منجر به کاهش تراز بازده داخلی پروژه به ۲۰/۹۹ درصد می‌گردد. همچنین در سامانه خورشیدی معطوف در حال استقرار بر روی سطح استقراض و ثابت که با افزایش ۲۰ درصدی هزینه‌های پروژه، به ترتیب برای ۲۵/۶۹ درصد و و با کاهش ۲۰ درصدی درآمد آن‌ها، کاهش تراز بازده داخلی پروژه به ترتیب ۲۰/۹۹ درصد و ۲۵/۶۹ درصد خواهد بود.

بنابراین، ترتیب اقتصادی بودن در سامانه‌ها به ترتیب مربوط به سامانه‌های خورشیدی معطوف در حال استقرار بر روی سطح ثابت که، استقراض و ثابت خواهد بود.
جدول (8) خلاصه نتایج آزمون تحلیل فنی - اقتصادی سامانه‌ها را نشان می‌دهد.

جدول 8 خلاصه ارزیابی رفتار سامانه‌ها برای مشخصه

<table>
<thead>
<tr>
<th>متریال</th>
<th>پوشش</th>
<th>توان</th>
<th>مصرف</th>
<th>فشار</th>
<th>دمای</th>
<th>چربی</th>
<th>حجم</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد مصرف</td>
<td>پوشش</td>
<td>توان</td>
<td>مصرف</td>
<td>فشار</td>
<td>دمای</td>
<td>چربی</td>
<td>حجم</td>
</tr>
<tr>
<td>مواد مصرف</td>
<td>پوشش</td>
<td>توان</td>
<td>مصرف</td>
<td>فشار</td>
<td>دمای</td>
<td>چربی</td>
<td>حجم</td>
</tr>
<tr>
<td>مواد مصرف</td>
<td>پوشش</td>
<td>توان</td>
<td>مصرف</td>
<td>فشار</td>
<td>دمای</td>
<td>چربی</td>
<td>حجم</td>
</tr>
</tbody>
</table>

عملکرد سامانه‌ها 46/71 وات مربوط به سطح تخت بوده و سامانه‌ها در حالت استقرار بر روی سطح استوانه و نیم کره درای متغیر پوشش به ترتیب 8/70 و 3/64 می‌باشد. متغیر پوشش بیشتر برای سامانه‌ها به‌کنار کننده توان امکان برداشت توزیع بیشتری از نیروی و توان را نخواهد داد. توان بیشتری مربوط به استقرار سامانه بر روی سطح نیم کره بوده و معادل 57/50 وات بوده است در حالی که کمیته توان معادل 46/71 وات مربوط به سامانه‌ها در حالت استقرار بر روی سطح تخت می‌باشد. عملکرد سامانه‌ها در شرایط استاندارد (دما 25 درجه سلسوس و توان نابشی 1000 وات بر مترمربع) برای حالت استقرار بر روی سطح استوانه و نیم کره برای و معادل 3/64 درصد محاسبه شده است. کمیته عملکرد معادل 7/67 درصد و مربوط به سطح تخت محاسبه شد و نیز جریان بیاژن و جریان مدار بیست در حالت بیشتر مربوط به استقرار سامانه متعلف بر روی سطح تخت بوده و به ترتیب معادل 496 ونل و 3/64 آمر اندوزه گیری شد. همچنین بیشترین جریان تولیدی در حالت استقرار سامانه بر روی سطح نیم کره معادل 3/66 آمپر به دست آمد. بنا براین، سامانه در حالت استقرار بر روی سطح نیم کره با درایف تاپش‌های پخشی علاء بر تاپش عمومی در دو مشخصه‌های الکتریکی و کیفیت نسبت به سطح استقرار دیگر می‌باشد. اوولیت های دوم و سوم به ترتیب مربوط به استوانه و تخت می‌باشد.
نتایج تحلیل اقتصادی سامانه‌ها نشان می‌دهد نرخ پازه‌دهی داخلی در سامانه‌های منعط‌ف نرخ‌شناختی در حالت استقرار بر روی سطح تخت، استوانه‌ای و نیم‌کره به ترتیب 24/82 و 28/70 و 27/46 درصد می‌باشد و نرخ پازه‌دهی داخلی برای با 27/46 میلیون ریال و 9/52 میلیون ریال و 18/83 میلیون ریال است که با توجه به مشابهت ارزش خالص فعلي و نرخ مناسب پازه‌دهی اقتصادی، طرح‌ها ضمیم داشتن توزیع اقتصادی جهت جذب سرمایه اولویت استفاده از سامانه‌های منعط‌ف بر روی سطح به ترتیب نیم‌کره، استوانه‌ای و تخت طبق پندید می‌گردد.

تقدير و تشکر
نویسنده‌گان مقاله بدنی‌سازی از استاتیک‌گروه اقتصاد و برای دانشگاه تربیت مدرس که در پیشرد اهداف پژوهشی تحقیق کمک و پاری داشتند، کمال تشکر را دارند.
منابع

اصحاح، اف. مجیدی و. ل. میثمی (۱۳۸۴)، "آرزویی بای‌های نازک کردن شرایط اعمال شده به روش مورد شیمیایی بخار تقویت شده با پلاسما بر عملکرد سلول خورشیدی سیلیکونی"، مجله مداد نوین، شماره ۴، جلد، صص ۱۵۴-۱۵۵.

اسکندری، م. (۱۳۸۴)، اقتصاد ملی، تهران: انتشارات دانشگاه صنعتی امیرکبیر، جلد اول.

ربیعی، م. (۱۳۹۱)، "نامیم سه درصد از کل انرژی کشور با منابع جدید پذیر"، ماهنامه بین‌المللی انرژی، شماره ۶، آبان ۱۳۹۱.

روزافی راد، م. (۱۳۸۵)، "طرحی مسیری‌ها خورشیدی ساختمان در ایران، انتشارات شرکت ملی نفت، جلد اول.

زمانی، م. (۱۳۸۶)، "زمین‌های نوین نزدیک به منطقه"، بی‌پرداز مهندسی هندسه اپی‌پلاستی فناوری زانو، شماره ۱۵، صص ۱-۴.

سایت بانک شرکت‌های جمهوری اسلامی ایران (۱۳۹۶)، بررسی تحولات دوره ملی سال‌های ۱۳۹۰ الی ۱۳۹۵.

سایت ، سازمان پژوهش و انرژی ایران (سازمان انرژی ایران)، صفحه نوشته‌های تخصصی و یافته‌های سازمان انرژی ایران (سازمان انرژی ایران) (۱۳۹۴)، "توجه به نیازهای انرژی تجدیدپذیر و پیش‌بینی افزایش بررسی مصرف انرژی در تهران"، شماره ۶، سال ۱۳۹۶.

شفیعی، م. و. فیاض و. م. نوبختی (۱۳۹۳)، "جامعه مناسب ساختمان با استفاده از انرژی تابشی در تهران"، نشر کتاب، صص ۱-۱۵.

سالیحی، ع. و. م. ایران (۱۳۹۱)، "مطالعه تأثیر شرایط محیطی بر روند تبدیل کیفیت سلول خورشیدی در استان خوزستان و اثرات راهکارهای برای بهبود عمومکار آنها"، گزارش کمیته مرکزی تحقیقات پردازش‌های شرکت برق منطقه‌ای خوزستان، صص ۳۸-۹۳.

سیدحسینی، ف. و. م. هریکی (۱۳۹۰)، "مطالعه نیازهای پژوهش طراحی آزمون تاکوگویی در ساختار کوپاس بهتر دیک‌های تبادلی به روش سل-زرل مورد استفاده در سلول‌های خورشیدی"، بیست و هفتمین کنفرانس مصرف بین‌المللی برق-تهران، صص ۸-۴.

محمودی، ح. و. فرخزاده، م. (۱۳۹۱)، "شناسایی رزمندگان جریان دو‌دار و محاسبه آنتن نور در چاه‌های تحت فاز‌آوری با گاز"، نشره پژوهش، شماره ۶۸، صص ۷۴-۸۰.

محمودی، م. و. م. فرخزاده، (۱۳۹۱)، "شناسایی رزمندگان جریان دو‌دار و محاسبه آنتن نور در چاه‌های تحت فاز‌آوری با گاز"، نشره پژوهش، شماره ۶۸، صص ۷۴-۸۰.

